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El sonido musical más sencillo lo produce el 
diapasón. Si es registrado por un oscilógrafo 
la gráfica que se obtiene es la de la función: 

y = A sin Bx 
donde A es la amplitud 
y oscila entre 0,001 y 
0,1 cm y B toma valores 
superiores a 200. 
Representa y = A sin Bx 

con A{0,1; 0,01; 0,01} 

y B{200; 400; 600} 
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En la figura está representada la 
trayectoria de un balón de futbol. 
Designamos por a la distancia, en 
metros, entre el punto donde el balón 
fue golpeado y el punto donde cae. 
Sea h(x) = 2x + 10·ln(1 - 0,1·x) la 
altura, en metros, del balón a x metros 
de donde fue golpeado. Hallar el valor 
de a, redondeando a las décimas. 

Se adjunta el diagrama de tallo y hojas 
de la variable  Y = tiempo necesario 
para la retirada selectiva de los 
residuos. Hallar  Ȳ y la desviación típica 
s junto con  el porcentaje de registros 
que caen en el intervalo [Ȳ - s; Ȳ + s] 

 

 
Representando funciones resuelve 
aproximadamente la inecuación: 

(e
x
 – 1)·x

-1
 ≤ 3 + ln x 

De un estanque se pescaron doce rodaballos. Sus respectivas longitudes (L en 
mm) y pesos (P en g) se recogen en la siguiente tabla 

 

Obtén la nube de puntos, anticipando el valor del 
coeficiente de correlación de Pearson y por último 
calcúlalo. 

En un club de ajedrez se han contabilizado las semanas 
transcurridas (X) y el número de partidas jugadas (en centenares 
Y); obteniéndose: 
 

X 5 10 15 20 25 30 35 40 45 

Y 20 46 58 82 110 128 136 163 170 

 
Obtén el diagrama de dispersión y la recta de regresión de Y 
sobre X. ¿Te atreves a pronosticar cuántas partidas se jugarán 
transcurridas 52 semanas? 

 

 
Un campo de futbol tiene una cabida de 4000 espectadores. Si por cada billete se piden 10 €, se 
prevé que esas localidades queden agotadas. Basándose en experiencias anteriores, se sabe que si 
el precio de cada billete aumenta un cierto porcentaje, x, sobre el valor base (10 €), el número de 
espectadores baja la mitad de ese porcentaje. Por ejemplo si el precio aumenta un 10% (x = 0,1); el 
número de espectadores baja un 5%. 

 Obtén la función que da los ingresos por la venta de billetes en función de x. 

 Uno de los directivos del club sugiere que el precio de cada billete sea de 20 €, para maximizar 
las ganancias. Pero un segundo directivo se opone, diciendo que lo ideal es mantener el precio 
de cada entrada en 10 €. Razona cuál de los dos tiene razón. 

 

María siempre va en tranvía a la Facultad, saliendo de casa entre 
las 7:30 y las 8:00 de la mañana. Si sale t minutos después de las 
7:30, la duración del viaje (en minutos) viene dada por: 
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Las clases de María empiezan a las 8:30. Comprueba que si María 
sale de casa a las 7:45 llega a tiempo, pero si sale 10 minutos 
después llega con retraso a las clases. A partir de la gráfica obtén a 
qué horas puede salir de casa, de modo que no llegue tarde a las 
clases 

 
  

Dada la función: 

  f(x) = x
4
- 3x

3
 – 3x

2
 + 14x 

calcula su recorrido primero recurriendo 
sólo a técnicas de cálculo diferencial y 
después a partir de la gráfica de la función. 

 
  

La distancia del extremo de la aguja horaria a la barra horizontal que sujeta el reloj viene dado por 1,05 - h(t) 
La distancia del extremo de la aguja minutera a la misma barra viene dada por 1,05 - m(t), donde: 
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Halla los tiempos, en minutos y segundos, entre las 0:00 y las 1:00, en los que la recta que pasa por los 
extremos de las agujas es paralela a la barra horizontal que sujeta el reloj 

 

 

Resolver la inecuación 

e
x
  ≤  (x

2
 – 1)·(2 – x)

-1
  ≤  ln x 

Da las soluciones aproximadas a milésimas. 

 

 

 
Sea la función: 

F(x) = 1 – x
2
 

Sea t la recta tangente a 
la gráfica de F(x) en el 
punto de abscisa ½, 
¿cuál es la inclinación 
de la recta t? 

Calcula los ángulos que en [0; 2π] 
son soluciones de la ecuación: 

5 + 2 cos x = 6 

 

 

Durante los ensayos de un motor, la velocidad de 
rotación de su eje varía, a lo largo de los primeros 
ocho minutos del experimento, de acuerdo con la 

 función : v(t) = t
3
 – 15·t

2
 + 63·t, donde t es el tiempo 

(en minutos), contados desde el inicio de la 
experiencia y v(t) está medido en centenas de 
rotaciones por minuto. Determinar la velocidad 
máxima y precisar en minutos y segundos, cuándo 
la velocidad de rotación fue superior a 6000 
rotaciones por minuto.  

Representa las funciones: 

 y = A sin x; y = A cos x para A {2; 4; 6; ½; 1/3; -2; -4; -1/2; -1/4} 

 y = sin (Bx); y = cos (Bx) para B {2; 4; 6; ½; 1/3; -2; -4; -1/2; -1/4} 

¿Te atreves a conjeturar como serían  las  gráficas 
de las funciones: 

y = 3sin (-2x) 

y = -5cos (4x)? 

 

En realidad los sonidos de los 
instrumentos musicales son mucho más 
complejos. Por ejemplo, para el violín la 
función es: 
Y = 0,06·sin(1000x) + 0,02·sin(2000x) + 
0,01·sin(3000x). 
Represéntala 

 

 
 

 

Obtén la gráfica de la función: 
Y = cosx + 0,7·sinx + 0,2·sin(4x) -
0,3·cos(5x) +0,2·sin(8x) – 0,06·cos(13x) 


